Astronomen haben Anzeichen für einen „Hot Spot“ entdeckt, der Sagittarius A* umkreist, und[{“ attribute=““>black hole at the center of our galaxy, using the Atacama Large Millimeter/submillimeter Array (ALMA). The finding helps us better understand the enigmatic and dynamic environment of our supermassive black hole.
“We think we’re looking at a hot bubble of gas zipping around Sagittarius A* on an orbit similar in size to that of the planet Mercury, but making a full loop in just around 70 minutes. This requires a mind-blowing velocity of about 30% of the speed of light!” says Maciek Wielgus of the Max Planck Institute for Radio Astronomy in Bonn, Germany. He led the study that was published today (September 22, 2022) in the journal Astronomy & Astrophysics.
The observations were made with ALMA in the Chilean Andes, during a campaign by the Event Horizon Telescope (EHT) Collaboration to image black holes. ALMA is — a radio telescope co-owned by the European Southern Observatory (ESO). In April 2017 the EHT linked together eight existing radio telescopes worldwide, including ALMA, resulting in the recently released first-ever image of Sagittarius A*. To calibrate the EHT data, Wielgus and his colleagues, who are members of the EHT Collaboration, used ALMA data recorded simultaneously with the EHT observations of Sagittarius A*. To the research team’s surprise, there were more clues to the nature of the black hole hidden in the ALMA-only measurements.
Mit ALMA haben Astronomen eine heiße Gasblase gefunden, die Sagittarius A*, das Schwarze Loch im Zentrum unserer Galaxie, mit 30 % Lichtgeschwindigkeit umkreist.
Zufällig wurden einige Beobachtungen gemacht, kurz nachdem eine Explosion oder ein Leuchten von Röntgenenergie aus dem Zentrum unserer Galaxie emittiert wurde, was von beobachtet wurde[{“ attribute=““>NASA’s Chandra X-ray Observatory. These kinds of flares, previously observed with X-ray and infrared telescopes, are thought to be associated with so-called ‘hot spots’, hot gas bubbles that orbit very fast and close to the black hole.
“What is really new and interesting is that such flares were so far only clearly present in X-ray and infrared observations of Sagittarius A*. Here we see for the first time a very strong indication that orbiting hot spots are also present in radio observations,” says Wielgus, who is also affiliated with the Nicolaus Copernicus Astronomical Center, in Warsaw, Poland and the Black Hole Initiative at Harvard University, USA.
Dieses Video zeigt eine Animation eines Hot Spots, einer Blase aus heißem Gas, im Orbit um Sagittarius A*, einem schwarzen Loch, das vier Millionen Mal größer ist als unsere Sonne im Zentrum unseres Planeten.[{“ attribute=““>Milky Way. While the black hole (center) has been directly imaged with the Event Horizon Telescope, the gas bubble represented around it has not: its orbit and velocity are inferred from both observations and models. The team who discovered evidence for this hot spot — using the Atacama Large Millimeter/submillimeter Array (ALMA), in which ESO is a partner — predicts the gas bubble orbits very close to the black hole, at a distance about five times larger than the black hole’s boundary or “event horizon.”
The astronomers behind the discovery also predict that the hot spot becomes dimmer and brighter as it goes around the black hole, as indicated in this animation. Additionally, they can infer that it takes 70 minutes for the gas bubble to complete an orbit, putting its velocity at an astonishing 30% of the speed of light.
Credit: EHT Collaboration, ESO/L. Calçada (Acknowledgment: M. Wielgus)
“Perhaps these hot spots detected at infrared wavelengths are a manifestation of the same physical phenomenon: as infrared-emitting hot spots cool down, they become visible at longer wavelengths, like the ones observed by ALMA and the EHT,” adds Jesse Vos. He is a PhD student at Radboud University, the Netherlands, and was also involved in this study.
The flares were long thought to originate from magnetic interactions in the very hot gas orbiting very close to Sagittarius A*, and the new findings support this idea. “Now we find strong evidence for a magnetic origin of these flares and our observations give us a clue about the geometry of the process. The new data are extremely helpful for building a theoretical interpretation of these events,” says co-author Monika Moscibrodzka from Radboud University.
ALMA allows astronomers to study polarized radio emission from Sagittarius A*, which can be used to unveil the black hole’s magnetic field. The team used these observations together with theoretical models to learn more about the formation of the hot spot and the environment it is embedded in, including the magnetic field around Sagittarius A*. Their research provides stronger constraints on the shape of this magnetic field than previous observations, helping astronomers uncover the nature of our black hole and its surroundings.
The observations confirm some of the previous discoveries made by the GRAVITY instrument at ESO’s Very Large Telescope (VLT), which observes in the infrared. The data from GRAVITY and ALMA both suggest the flare originates in a clump of gas swirling around the black hole at about 30% of the speed of light in a clockwise direction in the sky, with the orbit of the hot spot being nearly face-on.
“In the future, we should be able to track hot spots across frequencies using coordinated multiwavelength observations with both GRAVITY and ALMA — the success of such an endeavor would be a true milestone for our understanding of the physics of flares in the Galactic center,” says Ivan Marti-Vidal of the University of València in Spain, co-author of the study.
The team is also hoping to be able to directly observe the orbiting gas clumps with the EHT, to probe ever closer to the black hole and learn more about it. “Hopefully, one day, we will be comfortable saying that we ‘know’ what is going on in Sagittarius A*,” Wielgus concludes.
More information
Reference: “Orbital motion near Sagittarius A* – Constraints from polarimetric ALMA observations” by M. Wielgus, M. Moscibrodzka, J. Vos, Z. Gelles, I. Martí-Vidal, J. Farah, N. Marchili, C. Goddi and H. Messias, 22 September 2022, Astronomy & Astrophysics.
DOI: 10.1051/0004-6361/202244493
The team is composed of M. Wielgus (Max-Planck-Institut für Radioastronomie, Germany [MPIfR]; Nikolaus-Kopernikus-Astronomisches Zentrum, Polnische Akademie der Wissenschaften, Polen; Die Black Hole Initiative an der Harvard University, USA [BHI]), M. Moscibrodzka (Fakultät für Astrophysik, Radboud University, Niederlande). [Radboud]), J. Vos (Radboud), Z. Gelles (Center for Astrophysics | Harvard & Smithsonian, USA und BHI), I. Martí-Vidal (Universitat de València, Spanien), J. Farah (Las Cumbres Observatory, USA; University aus Kalifornien, Santa Barbara, USA), N. Marchili (Italienisches Regionalzentrum ALMA, INAF-Istituto di Radioastronomia, Italien und MPIfR), C. Goddi (Dipartimento di Fisica, Università degli Studi di Cagliari, Italien und Universidade de São Paulo, Brasilien) und H. Messias (ALMA Joint Observatory, Chile).
Das Atacama Large Millimeter/submillimeter Array (ALMA), eine internationale Astronomieeinrichtung, ist eine Partnerschaft zwischen der ESO, der US National Science Foundation (NSF) und den National Institutes of Natural Sciences (NINS) von Japan in Zusammenarbeit mit der Republik Chile. ALMA wird finanziert von der ESO im Namen ihrer Mitgliedsstaaten, von der NSF in Zusammenarbeit mit dem National Research Council of Canada (NRC) und dem Ministry of Science and Technology (MOST) und von NINS in Zusammenarbeit mit der Academia Sinica (AS) in Taiwan und das Korea Institute for Astronomy and Space Sciences (KASI). ). Die Erstellung und der Betrieb von ALMA werden von der ESO im Namen ihrer Mitgliedsstaaten geleitet; Vom National Radio Astronomy Observatory (NRAO), betrieben von Associated Universities, Inc. (AUI), im Namen von Nordamerika; Und vom National Astronomical Observatory of Japan (NAOJ) im Auftrag von Ostasien. Das Joint ALMA Observatory (JAO) bietet eine einheitliche Führung und Verwaltung für den Bau, den Betrieb und den Betrieb von ALMA.
Die Europäische Südsternwarte (ESO) ermöglicht es Wissenschaftlern auf der ganzen Welt, die Geheimnisse des Universums zum Nutzen aller zu entdecken. Wir konzipieren, bauen und betreiben Weltklasse-Observatorien auf der Erde – die Astronomen nutzen, um spannende Fragen zu beantworten und die Magie der Astronomie zu verbreiten – und fördern die internationale Zusammenarbeit in der Astronomie. ESO wurde 1962 als zwischenstaatliche Organisation gegründet und unterstützt heute 16 Mitgliedsstaaten (Österreich, Belgien, Tschechische Republik, Dänemark, Frankreich, Finnland, Deutschland, Irland, Italien, Niederlande, Polen, Portugal, Spanien, Schweden, Schweiz und das Vereinigte Königreich). ), zusammen mit dem Gastland Chile und mit Australien als strategischem Partner. Der Hauptsitz, das Besucherzentrum und das Planetarium der ESO, ESO Supernova, befindet sich in der Nähe von München in Deutschland, während die chilenische Atacama-Wüste, ein wunderbarer Ort mit einzigartigen Bedingungen für die Himmelsbeobachtung, unsere Teleskope beherbergt. Die ESO betreibt drei Überwachungsstellen: La Silla, Paranal und Chajnantor. Am Paranal betreibt die ESO das Very Large Telescope und sein Very Large Telescope Interferometer sowie zwei Infrarot-Durchmusterungsteleskope und das VLT-Durchmusterungsteleskop für sichtbares Licht. Ebenfalls in Paranal wird die ESO das South Array Cherenkov Telescope, das größte und empfindlichste Gammastrahlen-Observatorium der Welt, beherbergen und betreiben. Zusammen mit internationalen Partnern betreibt die ESO APEX und ALMA in Chajnantor, zwei Millimeter- und Submillimeter-Himmelsüberwachungseinrichtungen. Am Cerro Armazones in der Nähe des Paranal bauen wir das „größte Auge der Welt am Himmel“ – das Very Large Telescope der ESO. Von unseren Büros in Santiago, Chile aus unterstützen wir unsere Aktivitäten im Land und arbeiten mit Partnern und der chilenischen Gemeinschaft zusammen.
„Entdecker. Entschuldigungsloser Unternehmer. Alkoholfanatiker. Zertifizierter Schriftsteller. Möchtegern-TV-Evangelist. Twitter-Fanatiker. Student. Webwissenschaftler.
More Stories
Die NASA macht in Bezug auf die Erde eine Entdeckung, die „so wichtig wie die Schwerkraft“ ist
Wie wurden Schwarze Löcher so groß und schnell? Die Antwort liegt im Dunkeln
Eine Studentin der University of North Carolina wird die jüngste Frau sein, die an Bord von Blue Origin die Grenzen des Weltraums überschreitet